
 3

Abstract — The primary goal of service

architecture is to align the business design with
the information technology innovations in order to
make both organisational and technical system
parts more effective. Thus service architecture is
not necessarily bound to the technical aspects of
system development. It can be defined by using
conceptual models that are independent of any
implementation technology. Service-oriented
architecture (SOA) provides principles of system
decomposition into reusable, sharable and
interoperable components, which require high
degree of business data consistency. Unfortu-
nately, the conventional information system
analysis and design methods cover just a part of
required modeling notations for engineering of
service architectures. They do not provide
effective support to maintain semantic integrity
between business processes and data. Service-
orientation is a paradigm that can be realized as a
set of novel principles that can be used in
conceptual modeling of enterprise architectures.
Realizing a future vision on service-oriented
analysis and design requires reassessment of
existing conceptual modeling theories, concepts
and practices. The most fascinating idea about
service concept is that it applies equally well to
organizational as well as to technical components.
Principles of service-orientation could be
successfully used for separation of concerns by
breaking down enterprise system functionality into
coherent non overlapping subsystems, which are
represented by a set of service requesters and
service providers. The concept of service is rather
well understood in different domains and it can be
expressed in different traditional modeling
dimensions. Therefore, service-oriented descrip-
tions can be used for semantic integration of the
static and dynamic aspects of enterprise
architectures.

Index Terms — Conceptual modeling, Enterprise
architecture, Intersubjective and objective views in
system analysis and design, Semantic integrity,
Service-Oriented modeling

Manuscript received March 30, 2007.
Remigijus Gustas is a full professor at the Department of

Information Systems, Karlstad University, Sweden (e-mail:
Remigijus.Gustas@kau.se).

1. INTRODUCTION
Enterprise systems are evolving by adopting

new configurations of service architectures,
which prescribe and motivate various IT
solutions. Service orientation promotes flexibility
and interoperability by minimizing requirements
for shared understanding. Enterprise
architectures (EA) can be changed by replacing
or recomposing more specific services.
Traditionally, graphical representations of EA are
built fragment by fragment and when all is done,
then typically business and technical design does
not fit each other. It is quite expensive and time
consuming to maintain integrity and consistency
of multiple specification fragments. Service
architectures are intrinsically complex
engineering products that can be defined on
different levels of abstraction and represented by
using several dimensions. One of the reasons
why the traditional information system
engineering methods do not provide effective
support is that service architectures are difficult
to visualize across disparate modeling
dimensions such as the "why", "what", "who",
"where", "when" and "how" [1]. Another problem
is that the same implementation dependent
artifacts are used in both system analysis and
system design phases. It makes descriptions of
service architectures less comprehensible for
business experts.

The idea of computation independent modeling
was introduced by the Object Management
Group [2]. Two levels of computation
independent models can be distinguished:
semantic and pragmatic. The pragmatic
requirements correspond to the "why" dimension.
They typically refer to desirable or undesirable
situations, which are expressed as intentions of
stakeholders in terms of goals, problems and
opportunities [3]. Pragmatics is supposed to
motivate and drive the overall system analysis
and design process. One of the main challenges
in service-oriented analysis and design is
mapping from the pragmatic to semantic
modeling level. Semantic descriptions of services
must follow the basic conceptualization principle

Semantic Integration
 in Conceptual Modeling
 of Service Architectures

Gustas, Remigijus

 4

by representing only computation independent
aspects. Such representations are less complex
and more comprehensible for business process
experts. They can be successfully used by non-
technicians who play a key role in system
integration. It is recognized that UML support for
such task is quite vague, because semantic
integration principles of different diagram types
are still lacking [4].

Service-oriented analysis and design does not
exclude the object-oriented (OO) point of view
that is adopted by RUP, but rather suggest two
additional semantic and pragmatic levels above
the syntactic level of abstraction. Computation
oriented modeling languages abstract from
concrete implementation artifacts. This is a
reason why specifications at the syntactic level
are more comprehensible for software designers,
but not readily accessible and understandable for
business consultants and managers.

2. TWO SYSTEM DEVELOPMENT TRADITIONS
There are two significant qualities that

characterize system development traditions:
intersubjectivity and objectivity. Methods that put
into foreground modeling of the external behavior
have the intersubjective bias [5]. From the
intersubjective point of view, service is a unit of
functionality, which is exposed to environment.
External behavior helps to understand a usage
aspect of self-contained service components.
Intersubjective bias is especially obvious in the
enterprise modeling language Archimate [6].
Services can be also characterized by internal
state changes [7]. Semantics of changes are
typically represented by using state transition
links. Transitions are triggered by operations,
which specify the permissible ways for changes
to occur in different classes of objects. Various
types of OO diagrams that are intended for
conceptual modeling of static and dynamic
aspects have the objective bias to system
development. Such tradition is very strong in the
conventional system development approaches.

The static aspect of intersubjectivity can be
defined by using inheritance, composition and
classification relations among enterprise actors.
The dynamic aspect of intersubjectivity is
expressed by interaction dependencies [8], which
represent physical, information or a decision
flows between two kinds of actors involved.
Service providers are actors that typically receive
service requests, over which they have no direct
control, and transform them into responses that
are sent to service requesters. Each Service
Response is a function of a Service Request.
This idea illustrated graphically in figure 1.

Figure 1: Intersubjective view of service

From the objective stand point, an action is
changing business data from one consistent
state to another. Quite often service outputs
depend not only on inputs, but also on availability
of stored data that result from other services.
Such data are supposed to constrain service
responses to the present or future inputs. For
instance, if a reservation of trip is created, then it
can be paid by using a trip payment service.
Moving flows together with request and response
actions, which create or remove objects of
various classes, are crucial to understand the
semantic aspects of services. This idea is
illustrated by figure 2.

Requester Performer

Response

Request

B

A

C
Figure 2: Intersubjective and objective views in a service interaction
loop

The objective view of action can be defined by
using transition links. The transition link from a
class illustrates termination of an object and – to
a class represents creation of object. For
instance, a request action is supposed to remove
an object from class A and to create an object in
class B. Creation of object B is a precondition for
initiation of response action by performer, which
is supposed to remove business data about
object B and create an object in class C. It should
be noted that either precondition or poscondition
class of action may be missing, but not both of
them. Otherwise, an action makes no sense.
Such action has no effect on the internal
behavior of objects.

3. SEMANTIC INTEGRATION OF STATIC AND
DYNAMIC ASPECTS

The most conventional system development
methodologies are biased on the objective
tradition. They use totally different diagram types
for defining separately an external and internal
behavior. For instance, a used case diagram is
capable to express just an external view of

 5

system functionality. Most of the conventional
methods typically use various diagram types for
representation of many internal modeling
dimensions in isolation. Nevertheless, there is an
overlapping among them to some degree. For
instance, the concept of operation in UML is
represented in a class diagram ("what"
dimension), activity diagram ("how" dimension),
sequence diagram ("where" dimension) and
state-transition diagram ("when" dimension).
Furthermore, the atomic operations are typically
aggregated into higher granularity functions that
are represented as the elements of a use case
diagram ("who" dimension). It should be noted
that some use cases even can be interpreted as
goals at the pragmatic level of abstraction.
Interplay between the external and internal views
of enterprise systems and services create big
challenges even for the recently developed
system analysis and design methods [8], which
deal with an integrated modeling of static and
dynamic aspects.

Enterprise models traditionally define how
business, data, software application and
technology architecture is perceived by different
stakeholders. Since different modeling views and
dimensions are highly intertwined, it is crucial to
maintain integrity and consistency across
multiple diagrams on various levels of
abstraction. Traceability of changes from one
diagram type to another is a bottleneck in
traditional enterprise modeling approaches.
Service-orientation can be applied for verification
and validation of diagrams that are represented
on the pragmatic, semantic and syntactic levels.
Intersubjective and objective aspects of service
loops are defined equally well for organizational
as well as technical system parts. Organizational
system parts can be represented by individuals,
companies, divisions or roles, which denote
groups of people. Technical parts are repre-
sented by data, software and hardware compo-
nents.

Intersubjective semantics of services are
captured by interaction loops, which are able to
express the main workflow patterns such as
sequence, selection, synchronization and
iteration [9]. The objective tradition can be
effectively used for defining an internal behavior
of objects. An object lifecycle in service-oriented
approach is represented by using initial,
intermediate and final classes, which are
analyzed in the context of interactions between
organizational and technical system components.
Semantics of objective changes is expressed by
using three types of actions: reclassification,
creation and termination [9]. A creation action,
which is characterized by a missing precondition
class, corresponds to a starting point. A
termination action, which is characterized by a

missing postcondition class, corresponds to the
end point in object’s lifecycle.

Intersubjective view predefines very basic
structure of conceptual representation of service
architecture. It is expressed by using service
request and response flows into opposite
directions, which can be successfully used for
separation of concerns in system analysis and
design. Typically, a coherent set of interactions
are delegated to one independent technical
component. All coherent interactions that fit
together for the achievement of a common goal
are used for breaking down enterprise system
into coherent non overlapping subsystems that
can be implemented as autonomous services.
Since the concept of service is rather well
understood in different domains, it has a potential
to integrate intersubjective and objective views
into one comprehensive notation. In such a way
service-oriented diagrams are able to address
semantic integrity and consistency problems of
business data. It is not sufficient to represent
what type of objects are created and terminated
when an action is triggered. Service graphical
descriptions are capable to express more generic
classes, which are referred by using inheritance
links. Such classes are typically characterized by
an additional set of persistent attributes, on which
an action of more specific class has no effect.
Composition links are also of a great importance,
since they represent related classes of objects,
which are synchronously removed or created
when an action takes place.

Information flows are reminiscent of arrows in
dataflow diagrams [10], because they are
representing moving data between enterprise
system components, which may be interpreted
as data sources and sinks. If a system is imple-
mented without any computer support, then
information flows may be understood as moving
documents and pre/post-condition classes can
be viewed as archived data at rest. Precondition
and postcondition classes can be viewed as
database files or data stores in the computerised
system. It should be noted that the presented
modelling approach is useful for graphical
description of service architectures, which are not
prescribing any implementation details. Semantic
constructs follow the basic conceptualization
principle by representing only computation
neutral aspects.

4. CONCLUSIONS
The understanding of enterprise architecture

relies on knowing how different subsystems are
interconnected. Semantic relations among
enterprise system components and objects
define conceptual representations of service
architectures. Interplay of intersubjective and

 6

objective views in one service-oriented diagram
facilitates better semantic integrity control

between the static and dynamic aspects. There
are typically many stakeholders involved during
the architecture engineering process. For
systematic analysis of service architectures, it is
crucial to maintain a holistic representation,
where external and internal views are visualized
together. It is not reasonable to duplicate the
same concepts many times in different diagrams
just because such separation is required from a
technical design point of view. Semantic integrity
of static and dynamic aspects of service
descriptions is achieved by superimposing the
intersubjective and objective perspectives
together.

Service-oriented paradigm should open a
totally new way for enterprise engineering of
service components that span across the
organisational and technical system boundaries.
Conceptual models of enterprise system
architecture can be defined as a set of loosely
coupled components. Service-orientation has the
potential for organizations to reduce system
architecture evolution complexity and to improve
learning capacity. A new service-oriented
approach for system analysis and design should
bring significant benefits including: improved
ability for organizations to maintain strategic
knowledge in a systematic way, reduced costs
for a systematic analysis of new IT solutions
before they are implemented, improved integrity
and traceability of knowledge within companies
by providing comprehensible service
architecture descriptions. Our experience in
analyzing system specifications by using

computation independent notation demonstrates
that service-oriented descriptions are more
comprehensible for personnel without a
technical background. Service-oriented
paradigm has no implementation bias and
therefore it can be used for bridging a
communication gap among system designers
and business analysis experts.

REFERENCES

[1] Zachman, J. A., “Enterprise Architecture: The Issue of

the Century”, Database Programming and Design
Magazine, 1996.

[2] Object Management Group Architecture Board (2003),
“MDA Guide”, version 1.0.1, 2003, (Ed.) Miller J.,
Mukerji J., www.omg.org/ docs/omg/03-06-01.pdf,
November20, 2006.

[3] Gustas, R. and Gustiene, P., “Pragmatic – Driven
Approach for Service-Oriented Analysis and Design”,
Information Systems Engineering - from Data Analysis
to Process Networks, Idea Group Inc., 2007.

[4] Harel, D., & Rumpe, B., “Meaningful Modeling: What’s
the Semantics of ‘Semantics’?”, IEEE Computer,
October, 2004, pp. 64-72.

[5] Dietz J. L. G., Enterprise Ontology: Theory and
Methodology, Springer, Berlin, 2006.

[6] Lankhorst, M. et al., Enterprise Architecture at Work,
Springer, Berlin, 2005.

[7] Hull, R., Christophides, V., & Su, J., “E-services: A look
Behind the Curtain”, ACM PODS, San Diego, CA, 2003.

[8] Dori, D., Object-Process Methodology: A Holistic
System Paradigm, Springer, 2002, Berlin.

[9] Gustas, R. and Gustiene, P., “Service-Oriented
Foundation and Analysis Patterns for Conceptual
Modelling of Information Systems”, International
Conference on Information System Development,
Springer, 2007.

[10] Hoffer, J. A., George, J. F. and Valacich J.S., Modern
System Analysis and Design, Pearson Prentice Hall,
New Jersey, 2004.

